

THOMAS GAMBORG NØRGAARD

Build an API with Laravel - Sample

First published by Wacky Studio 2019

Copyright © 2019 by Thomas Gamborg Nørgaard

All rights reserved. No part of this publication may be reproduced, stored or

transmitted in any form or by any means, electronic, mechanical,

photocopying, recording, scanning, or otherwise without written

permission from the publisher. It is illegal to copy this book, post it to a

website, or distribute it by any other means without permission.

Thomas Gamborg Nørgaard asserts the moral right to be identified as the

author of this work.

Thomas Gamborg Nørgaard has no responsibility for the persistence or

accuracy of URLs for external or third-party Internet Websites referred to in

this publication and does not guarantee that any content on such Websites

is, or will remain, accurate or appropriate.

Designations used by companies to distinguish their products are often

claimed as trademarks. All brand names and product names used in this

book and on its cover are trade names, service marks, trademarks and

registered trademarks of their respective owners. The publishers and the

book are not associated with any product or vendor mentioned in this book.

None of the companies referenced within the book have endorsed the book.

First edition

Proofreading by Sille Justesen Krogh

Editing by Christian Nørrelund

This book was professionally typeset on Reedsy.

Find out more at reedsy.com

https://reedsy.com

Contents

Errata iv

Code samples and conventions v

Why Laravel? ix

Prerequisites x

Introduction 1

The JSON:API specification 14

Planning 15

Build your API 16

Test-drivenWorkflow 17

Books 18

Don’t repeat yourself 19

Finishing up 20

Errata

Since this is our first book, errors will most certainly have snuck in.

You can help support the book by sending an email with any errors your

might have found to hello@wackystudio.com along with the chapter

and section title.

As soon as we are informed about an error, we will fix it and release an

update to the book. If you have feedback, we would love to hear from

you as well.

* * *

iv

Code samples and convenঞons

In this book, we will reference a bunch of technical things, especially

when it comes to API endpoints and code samples.

The conventions used to show an API endpoint follows the protocol

below:

VERB: /api/endpoint?with=possible&query=params

TheVERBpart references theHTTP verb, wewill touch upon this later in

the book, but for now these are: GET, POST, PUT, PATCH and DELETE.

Next, you have the endpoint itself that indicates an intention. Lastly,

you have the query parameters, which are often used for sorting and

such.

To give a more precise example, here is an example of a more common

endpoint for querying books from a bookstore backend:

GET:/books?include=author

As youmight also have noticed by now, we use bold text to emphasize

v

certain technical terms.

In this book, we will also show examples of a response payload in JSON.

Let’s take a look at how that will be shown:

{

"data": [{

"type": "books",

"id": 1,

"attributes": {

"title": "Build an API with Laravel",

"body": "Lorem ipsum",

"created": "2019-02-01 00:00:00",

"updated": "2019-02-01 00:00:00"

},

"relationships": {

"author": {

"data": {

"id": 1,

"type": "authors"

}

}

}

}],

"included": [

{

"type": "authors",

"id": 1,

"attributes": {

"name": "Wacky Studio"

}

}

]

}

Let’s cover the code samples you will find in this book first. Since this

vi

book is centered around building an API using Laravel and Laravel is

developed in PHP, most code will be PHP code.

The code provided should not be considered applicable in production—

it’s written with the intention of teaching inmind. We strive to write

code following best practices, asmuch as possible. Youmight find areas

where this is not the case, but keep in mind that we also strive to write

code, where it is as easy to get a technical points across as possible.

This book has been written with syntax highlighting enabled. How this

is interpreted is different depending on the platform, e-readers and

chosen theme. The following code is an example to see how your e-

reader highlights the syntax. If you see beautiful colors you are in luck,

otherwise we hope you can still follow along.

<?php

class Object {

private $variable;

public function __construct($parameter)

{

$this->variable = $parameter;

}

public function doSomething()

{

return 'did something';

}

}

?>

vii

* * *

viii

Why Laravel?

There are a lot of reasonswhywechose towrite this bookaroundLaravel.

The biggest reason is that we use the framework in almost all of our

applications and solutions. At the time of writing, we have been using

Laravel for almost six years and have written over a dozen applications,

varying from small to rather large sizes.

Since our primary income comes fromdeveloping applications, wewant

the development time to be as short and cheap as possible. We don’t

want to reinvent the wheel every time we start on a new project, we

don’t want something that is extremely hard to deploy to a server, and

we also want to make something that is not a nightmare to maintain

later on.

Laravel helps us deal with precisely those problems, which makes

development a joy.

* * *

ix

Prerequisites

This book is written with Laravel developers in mind. You do not have

to be a super advanced and skilled developer to follow along, but bear

in mind that this is not a book about the Laravel framework itself, but

instead about how to write an API using Laravel.

Therefore, youwill have tohave abasic understandingof Laravel to keep

up. We certainly recommend that you have tried writing an application

in the framework before reading, and that you know what we talk

about when we mention: Client, Server, Request, Response, Routes,

Controllers, Eloquent orModels, Migrations, Factories, Authentication,

Authorization, and Validation.

If most of these words are foreign to you, we recommend that you read

up on Laravel before continuing.

Wewill also be using Laravel Collections heavily, so an understanding of

these– especially themap,filter, each,flatten,flatMap,merge, pluck,

sort, unique and valuesmethods is necessary.

Also, we expect that you know the basics around PHP, especially

the basics around PSR-4 namespacing, how to import classes from

other namespaces and so forth. In many IDE’s and editors, all this

functionality can be installed with a simple plugin or will already built

into the IDE or editor.

x

* * *

xi

1

Introducঞon

Welcome to Build an API with Laravel, where we, as the title reveals,

will take a look at how to build an API using Laravel. First, we will be

looking at an API from amore theoretical point of view. Don’t worry,

we won’t bore you to death with small details, but rather give you a

fundamental understanding, which we can build on from there.

Wewill be looking atwhywe are usingPHPandLaravel, andwhatmakes

it a great candidate for writing APIs.

We will go through the JSON:API Specification and learn about the

protocols and conventions, and how these can help us build a more

consistent API that is easier for us to consume.

We will look at how to plan an API, what to be aware of and what

decisions you’ll have to make, depending on whether your API is public

or private.

Next, we will be looking at authentication, where we take a closer look

at Laravel Passport and OAuth 2, which Laravel Passport is built upon.

Here, we will go over the different grant types and what they are used

for, to give you a clearer image of what you should choose for your

applications.

1

BUILD AN API WITH LARAVEL - SAMPLE

Then, we’ll get to the heart of the matter, where we will be writing the

actual API.Wewill start outwith a rather simple case to give you a better

picture of how to apply the knowledge you’ll get from this book and to

have a common ground to build on.

Wewill be looking at Test-drivenDevelopment, especially the parts that

are relevant to API development, and through this use the great testing

tools from Laravel to test our API and also get an excellent workflow on

top of it. We won’t go into every detail about Test-driven Development,

since it’s a huge topic in itself and that’s not what this book is about.

We will, however, use Test-driven Development to show you howwe

can drive out our implementations, how we can refactor code to not

having to repeat the same code over and over again, and get code that

is easier to reuse.

Lastly, we will be looking at authorization and how you can authorize

different parts of your API.

We will end the book with a bonus chapter, where we will go over the

client side of things and show you how you can consume your API using

client implementations, which is a huge advantage to using a set of

strict protocols which the JSON:API specification will give us.

We hope you will enjoy reading this book as much as we have enjoyed

writing it. We find that knowing how to build APIs has helped us a

lot during our projects, since you can separate the concerns between

frontend and backend, and thereby adapt to changes or new platforms,

which might consume your API much easier. Let’s get to it!

2

INTRODUCTION

What is an API?

To best describe what an API is, let’s imagine that our application or

service is like a restaurant. The frontend of the application is where

you sit at the table and eat, and the backend is the kitchen, where they

prepare food for you. Here, an API plays the role of themenu, where you

can pick what you want the kitchen to cook for you. In programming

terms, an API makes it possible for a frontend developer to request a

specific task or resource from the backend.

If you look at a menu, you might notice that it consists of a finite

predetermined set of dishes: a collection of dishes that the kitchen

knows how to cook and prepare for you. The same goes for an API, but

instead of having dishes to choose from, you instead select between

endpoints. Throughendpoints,we canorder ourbackend toprepare and

send back some data for us. It could be a list of books for a bookstore

or the latest comments for a blog post, depending on the service or

application that serves a solution to a problem.

Like a menu being divided into starters, main course and desserts, an

API is divided into resources. We’ll be touching upon resources later—

right now you just have to know that they exist.

Much like a menu can have various designs, the same goes for APIs

and the architecture behind. At the time of writing this book, there are

many types of API architectures. Some architectures like SOAP are not

used that muchmore, while others like GraphQL are new and exciting.

Then there is the common technology like REST, which we are going to

cover in this book.

3

BUILD AN API WITH LARAVEL - SAMPLE

What is REST?

REST stands for Representational State Transfer and is an architec-

tural style used for communication between a server and a client.

REST uses the HTTP orHypertext Transfer Protocol, as a base for the

communication. We already use HTTP for transferring HTML and

other media from servers to our clients. This is, for instance, what

happens when you visit a website, so by building on an already familiar

technology, REST is easily adaptable.

REST sends data using either XML or JSON. Both of these languages are

meant for transferring data, but also meant to be readable by humans,

which also makes error tracking in REST a lot easier. REST is platform

and language independent, as long as you adapt to HTTP, you adapt to

REST. Already established features of HTTP, like SSL encryption, make

it possible to transfer encrypted data across from server to client, so

there are a lot of advantages we get for free.

A disadvantage is that REST is not stateful, meaning that the state is

not carried along from one request to the other. Therefore, you always

have to send some kind of context to the server for it to know what to

deliver to you. This limitation stems fromHTTP itself, so this is most

likely something you are already familiar with.

Like HTTP, REST works through requests, where you “pull” data from

the server. There is no way of “pushing” data through REST, although

it is possible for the server to do server pushing, using the HTTP 2

standard, but even that is only initiated by a request.

Since REST relies so much on HTTP, there are some things we have to

examine to understand REST and the way communication takes place.

For instance, HTTPmethods, also called verbs, play a significant role

in the intention for a REST request, as much as the HTTP Status code

4

INTRODUCTION

plays a significant role in the answers. These are the HTTP building

blocks that make up most of the base of REST communication. Let’s

take a closer look at HTTP Verbs.

HTTP verbs

Asmentioned earlier, HTTP verbs play a significant role in the intention

of a request. The HTTP verb tells the server about how we, on the client

side, intend to handle our data. How to handle data is often looked

at from a CRUD perspective, which stands for: Create, Read, Update,

Delete. As an example, imagine an application for a bookstore. The

CRUD part here will be responsible for: Adding, Listing, Updating or

Removing books from the bookstore.

GET

A request with a GET verb is for reading data. That’s the only thing

this verb tells our server. The API endpoint will determine whether

we are reading a collection of resources or just a single resource. We

will go much further into detail about collections and resources later in

this book, but for now, to put it into context, let’s revisit the bookstore.

Here, the resource is a book and a collection could be a stack of books.

POST

A request with a POST verb is for creating a resource. In other words,

we use POST whenever we want to transfer new data from the client to

the server.

PUT and PATCH

Both the PUT and the PATCH request is for updating or modifying data,

but the way they are intended is a bit different.

5

BUILD AN API WITH LARAVEL - SAMPLE

PUT verbs are used when all data for a resource is completely replaced

with the data given by the client.

PATCH verbs are used for a partial update or modification, instead of

replacing everything in the resource.

Whether to use PUT or PATCH is all up to you and the needs of your

application. The differencesmight be subtle, but they are there tomake

it clear to the client making the request, what is actually happening.

DELETE

A requestwith aDELETE verb is,much as the name implies, for deleting

a resource

Now that we know a bit more about how we tell the server about our

intentions using HTTP verbs, let’s look at how the server tells us about

the response through status codes.

Status Codes

Status codes are used by the server to tell the client whether a request

has been successfully completed. The areas that status codes cover are

divided into 5 groups. Let’s take a look at a few from each group that

we will be using the most:

2XX as Success

The 2XX range are statuses that tell the client a request was successful.

Youwould think that only one statuswas needed here, but in some cases

where, for example, you create something, it would be nice to know if

the resource has been created.

6

INTRODUCTION

Let’s take a look at a few of the statuses we’ll be using later.

200 OK

The 200 status code, which tells the client that the entire request was

successful, is the most common. Youmight think that it’s sufficient to

use this one status and then addmore details about the request in the

response payload, but remember that these statuses were created for

HTTP and to solve a problem. Since REST is built uponHTTP, andHTTP

uses its status codes to communicate how a request has been fulfilled,

why reinvent the wheel? Better to use what is already a well-known

standard.

Which leads us to the next status.

201 Created

This status code tells the client that one or more resources have been

created. As mentioned in the 200 status code, this status code makes it

possible to only look at the 201 status, and we know, without having to

look at the response payload, that the resource was created and we can

move onmuch faster.

204 No Content

This status code tells the client that the request has been fulfilled, but

also that there is no payload in the response. To give an example, this

could be used when updating a resource. Here you don’t really need any

data back since you are telling the backendwhat to update and therefore

know what to expect.

7

BUILD AN API WITH LARAVEL - SAMPLE

3XX as Redirecࢼon

The 3XX range are all statuses that tell the client about redirections.

Most applications are continually being updated, and it is not uncom-

mon that endpoints are being updated or removed. Then what do you

do if someone out there is using an old endpoint where a sudden change

could break their entire site or application?

Here, redirects play an important role.

301 Moved Permanently

The 301 status code tells the client that an endpoint has been moved

and should give a new location in its payload for the client to save for

future reference. A thing to note here is that the 301 status code makes

it possible to change the HTTP verb for the request.

This example is a little silly, but let’s imagine we have the following

endpoint:

POST: /v1/book

Weknowyouwouldn’t usePOST for this, but imagine that this endpoint

returns a collection of books. With the 301 status code, you are allowed

to change the HTTP verb when redirecting to the new endpoint, which

then could be like this:

GET: /v2/book

8

INTRODUCTION

This is not something we recommend doing, unless you are using a

wrong HTTP verb beforehand, where a change makes sense. Let’s take

a look at a status code that allows you to redirect, but does not allow

you to change the HTTP verb. A HTTP verb that can ensure the redirect

is more consistent than in this example.

307 Temporary Redirect

The 307 status code is used for a temporary redirect. Here, the server

should give a new location in its payload, for the client to redirect to.The

client will not save any information about the redirect and will merely

follow the location given by the server and gladly hit the old endpoint

time after time, since the redirect is only temporary. A thing to note,

as mentioned in the 301 status code, is that the 307 status code does

not let you change the HTTP verb in the redirect. When redirecting the

user, the endpoint to which you are redirected must match the HTTP

verb fromwhich you were redirected.

308 Permanent Redirect

The 308 status code is used for a permanent redirect, much like the

301 redirects. The only difference is that, like 307, it does not allow for

the HTTP verb to change from the original endpoint to the endpoint

redirected to.

4XX as Client errors

The 4XX range are all statuses that deal with client error, which could

be a request that the client is not authenticated to do or even a request

to a misspelled endpoint, which the server cannot fulfill.

9

BUILD AN API WITH LARAVEL - SAMPLE

400 Bad Request

The 400, much like the 200, is a broad status code. All it does is tell

the client that the server could not or would not process the request. It

does not specify any reasons, and the client would have to look at the

payload for further information.

401 Unauthorized

The 401 status tells the client that the request could not be fulfilled due

to lacking authentication credentials.

403 Forbidden

The 403 status tells the client that the request could not be fulfilled

due to lacking authorization. For example, this status code could be

sent back if one user tries to access or update another user’s data.

The user might be authenticated to access the endpoint, but not have

authorization to access the data.

404 Not Found

The 404 status tells the client that the requested resource could not

be found. This is a pretty common status that most people, even non-

developers, have beenmet by.

405 Method Not Allowed

As we have explained earlier, HTTPmethods are also called HTTP verbs

in REST. The 405 status tells the client that the request has beenmade

with an HTTP verb that is not allowed. This could, for instance, be a

request made using a GET verb to an endpoint that only supports the

POST verb. In this case, a 405 status should be sent to the client.

10

INTRODUCTION

422 Unprocessable Enࢼty

The official RFC4918 states that this status is to be used when the

server understands the content of the request and the syntax of the

request is correct, but was unable to process the request. An RFC

stands for Request For Comments, which can be viewed as the rules for

standardizing the internet. The number references the document in

which the request has been documented. In Laravel, the422 status code

is used for validation errors when using REST and JSON. The JSON:API

documentation says that this status is to be used when creating or

updating a resource where an attribute is invalid. Based on all these

examples, we can safely say that the 422 status code tells the client

about invalid data sent in the request.

5XX as Server errors

The5XX range are all statuses that dealwith the server, where it is aware

that an error has occurred or might otherwise be unable to handle the

request.

500 Internal Server Error

This status is used as a generic error message given when it is not

possible to provide a more specific status code.

501 Not Implemented

This status is used when the server does not know how to fulfill the

request, but implies that it might be available in the future. This could

be a new feature that is under development.

11

BUILD AN API WITH LARAVEL - SAMPLE

502 Bad Gateway

This status is used when the server is acting as a gateway and has

received an invalid response. If you have ever used nginx, you have

probably seen this status code. Since nginx sits as theman in themiddle

and intercepts all incoming requests and then proxies these forwards,

if nginx receives an error from the party it tries to proxy to, it gives you

a 502 status code.

503 Service Unavailable

This status code is used if the server is down for maintenance

504 Gateway Timeout

This status is used when the server is acting as a gateway and did not

receive a response within a given period. As with the 502 status code,

this is something you see with nginx, where you configure a timeout

limit, in which a request should be fulfilled or else a timeout will be

sent back to the client. This is used to prevent the server fromworking

forever on a job that might not be solvable. This could, for instance, be

an error in PHP, where something loops forever. We don’t want our

users to wait forever and they want their data, so let’s use a time limit

andmove on.

Summary

We have made a good start already and covered some of the basics for

both this book but also APIs in general.

We have looked at what an API is and how it can be seen as a menu at a

restaurant, where users can see what you can order from the backend.

12

INTRODUCTION

We have taken a look at REST, how it builds on top of HTTP and thereby

inherits all the abilities that HTTP already has. We have looked at HTTP

verbs and how they play a significant role in the intention of a request.

We have looked at the more common status codes and the ones we will

cover in this book, how these are used to respond back to the client

about how the request has been fulfilled or not. With this knowledge

in mind, let’s dig a little deeper into APIs and how to plan your work

before you sit down and write your API.

* * *

13

2

The JSON:API specificaঞon

To read this chapter buy the full book at http://buildanapi.com

14

3

Planning

To read this chapter buy the full book at http://buildanapi.com

15

4

Build your API

To read this chapter buy the full book at http://buildanapi.com

16

5

Test-driven Workflow

To read this chapter buy the full book at http://buildanapi.com

17

6

Books

To read this chapter buy the full book at http://buildanapi.com

18

7

Don’t repeat yourself

To read this chapter buy the full book at http://buildanapi.com

19

8

Finishing up

To read this chapter buy the full book at http://buildanapi.com

20

	Errata
	Code samples and conventions
	Why Laravel?
	Prerequisites
	Introduction
	The JSON:API specification
	Planning
	Build your API
	Test-driven Workflow
	Books
	Dont repeat yourself
	Finishing up

